Configuring Call Options
Call options allow you to pass type-safe structured inputs to your agent. Use them to dynamically modify any agent setting based on the specific request.
Why Use Call Options?
When you need agent behavior to change based on runtime context:
- Add dynamic context - Inject retrieved documents, user preferences, or session data into prompts
- Select models dynamically - Choose faster or more capable models based on request complexity
- Configure tools per request - Pass user location to search tools or adjust tool behavior
- Customize provider options - Set reasoning effort, temperature, or other provider-specific settings
Without call options, you'd need to create multiple agents or handle configuration logic outside the agent.
How It Works
Define call options in three steps:
- Define the schema - Specify what inputs you accept using
callOptionsSchema - Configure with
prepareCall- Use those inputs to modify agent settings - Pass options at runtime - Provide the options when calling
generate()orstream()
Basic Example
Add user context to your agent's prompt at runtime:
import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const supportAgent = new ToolLoopAgent({ model: 'openai/gpt-4o', callOptionsSchema: z.object({ userId: z.string(), accountType: z.enum(['free', 'pro', 'enterprise']), }), instructions: 'You are a helpful customer support agent.', prepareCall: ({ options, ...settings }) => ({ ...settings, instructions: settings.instructions + `\nUser context:- Account type: ${options.accountType}- User ID: ${options.userId}
Adjust your response based on the user's account level.`, }),});
// Call the agent with specific user contextconst result = await supportAgent.generate({ prompt: 'How do I upgrade my account?', options: { userId: 'user_123', accountType: 'free', },});The options parameter is now required and type-checked. If you don't provide it or pass incorrect types, TypeScript will error.
Modifying Agent Settings
Use prepareCall to modify any agent setting. Return only the settings you want to change.
Dynamic Model Selection
Choose models based on request characteristics:
import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const agent = new ToolLoopAgent({ model: 'openai/gpt-4o-mini', // Default model callOptionsSchema: z.object({ complexity: z.enum(['simple', 'complex']), }), prepareCall: ({ options, ...settings }) => ({ ...settings, model: options.complexity === 'simple' ? 'openai/gpt-4o-mini' : 'openai/o1-mini', }),});
// Use faster model for simple queriesawait agent.generate({ prompt: 'What is 2+2?', options: { complexity: 'simple' },});
// Use more capable model for complex reasoningawait agent.generate({ prompt: 'Explain quantum entanglement', options: { complexity: 'complex' },});Dynamic Tool Configuration
Configure tools based on runtime context:
import { openai } from '@ai-sdk/openai';import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const newsAgent = new ToolLoopAgent({ model: 'openai/gpt-4o', callOptionsSchema: z.object({ userCity: z.string().optional(), userRegion: z.string().optional(), }), tools: { web_search: openai.tools.webSearch(), }, prepareCall: ({ options, ...settings }) => ({ ...settings, tools: { web_search: openai.tools.webSearch({ searchContextSize: 'low', userLocation: { type: 'approximate', city: options.userCity, region: options.userRegion, country: 'US', }, }), }, }),});
await newsAgent.generate({ prompt: 'What are the top local news stories?', options: { userCity: 'San Francisco', userRegion: 'California', },});Provider-Specific Options
Configure provider settings dynamically:
import { openai, OpenAIProviderOptions } from '@ai-sdk/openai';import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const agent = new ToolLoopAgent({ model: 'openai/o1-mini', callOptionsSchema: z.object({ taskDifficulty: z.enum(['low', 'medium', 'high']), }), prepareCall: ({ options, ...settings }) => ({ ...settings, providerOptions: { openai: { reasoningEffort: options.taskDifficulty, } satisfies OpenAIProviderOptions, }, }),});
await agent.generate({ prompt: 'Analyze this complex scenario...', options: { taskDifficulty: 'high' },});Advanced Patterns
Retrieval Augmented Generation (RAG)
Fetch relevant context and inject it into your prompt:
import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const ragAgent = new ToolLoopAgent({ model: 'openai/gpt-4o', callOptionsSchema: z.object({ query: z.string(), }), prepareCall: async ({ options, ...settings }) => { // Fetch relevant documents (this can be async) const documents = await vectorSearch(options.query);
return { ...settings, instructions: `Answer questions using the following context:
${documents.map(doc => doc.content).join('\n\n')}`, }; },});
await ragAgent.generate({ prompt: 'What is our refund policy?', options: { query: 'refund policy' },});The prepareCall function can be async, enabling you to fetch data before configuring the agent.
Combining Multiple Modifications
Modify multiple settings together:
import { ToolLoopAgent } from 'ai';import { z } from 'zod';
const agent = new ToolLoopAgent({ model: 'openai/gpt-5-nano', callOptionsSchema: z.object({ userRole: z.enum(['admin', 'user']), urgency: z.enum(['low', 'high']), }), tools: { readDatabase: readDatabaseTool, writeDatabase: writeDatabaseTool, }, prepareCall: ({ options, ...settings }) => ({ ...settings, // Upgrade model for urgent requests model: options.urgency === 'high' ? 'openai/gpt-5' : settings.model, // Limit tools based on user role activeTools: options.userRole === 'admin' ? ['readDatabase', 'writeDatabase'] : ['readDatabase'], // Adjust instructions instructions: `You are a ${options.userRole} assistant.${options.userRole === 'admin' ? 'You have full database access.' : 'You have read-only access.'}`, }),});
await agent.generate({ prompt: 'Update the user record', options: { userRole: 'admin', urgency: 'high', },});Using with createAgentUIStreamResponse
Pass call options through API routes to your agent:
import { createAgentUIStreamResponse } from 'ai';import { myAgent } from '@/ai/agents/my-agent';
export async function POST(request: Request) { const { messages, userId, accountType } = await request.json();
return createAgentUIStreamResponse({ agent: myAgent, messages, options: { userId, accountType, }, });}Next Steps
- Learn about loop control for execution management
- Explore workflow patterns for complex multi-step processes